Accrochez-vous un peu, le monde microbien, et celui de Escherichia coli en particulier est fascinant avec cette série d’expériences sur son évolution ...
«Une expérience d'évolution avec des bactéries remet en question la sagesse conventionnelle sur la taille et le coût de production», source phys.org.
En 1988, un biologiste de la Michigan State University, Richard Lenski, a déposé 12 flacons de E. coli et son groupe a maintenu et suivi leur évolution depuis. Périodiquement, des sous-échantillons sont congelés, permettant aux scientifiques de comparer les bactéries à différents moments en les ramenant à la vie.
Au fil du temps, les E. coli en évolution ont grossi; après 60 000 générations, les cellules font environ deux fois la taille de leurs ancêtres. Mais cette augmentation de taille s'est-elle accompagnée de changements que nous attendons dans le métabolisme, la taille et les taux de croissance de la population ?
Des chercheurs du Monash University Center for Geometric Biology ont collaboré avec Richard Lenski pour le découvrir. Les résultats sont publiés dans Proceedings of the National Academy of Sciences (PNAS).
Le métabolisme dicte la vitesse à laquelle les organismes transforment l'énergie en entretien et en production.
Alors que les espèces plus grandes ont des taux métaboliques plus élevés, elles sont en fait plus efficaces et ont donc des taux métaboliques plus faibles par rapport à leur taille. Ainsi, alors que les espèces plus petites ont des densités de population plus élevées et peuvent atteindre ces densités plus rapidement, la masse totale de la population est plus élevée chez les espèces plus grandes (pensez aux souris et aux éléphants).
Mais est-ce que ce qui précède est vrai au sein d'une espèce?
Souvent, la série de tailles au sein d'une espèce n'est pas particulièrement large, ce qui rend les inférences sur la taille difficiles à tester.
Les bien nommées «Lignes de Lenski» contournent ce problème. Le laboratoire de Richard a envoyé des échantillons congelés de l'original E. coli, les ancêtres, ainsi que des échantillons de 10 000 et 60 000 générations d'évolution.
Les chefs de projet de l'École des sciences biologiques de l'Université Monash, le professeur Dustin Marshall et le Dr Mike McDonald, ont entrepris de faire revivre les cellules et de mesurer la taille des cellules, le métabolisme, la taille de la population et la croissance de la population.
«Nous avons constaté qu'à mesure que les cellules grossissaient au cours de l'évolution, les taux métaboliques augmentaient mais étaient inférieurs par rapport à leur taille, comme le prévoyait la théorie», a déclaré le professeur Marshall.
«Également prévu par la théorie, les populations de cellules plus grandes avaient des densités de population plus faibles mais une biomasse plus élevée que leurs ancêtres plus petits», a-t-il déclaré.
«La grande surprise et à l'opposé de la théorie, c'est que les populations de cellules plus grandes, malgré leur métabolisme relativement plus faible, ont augmenté plus rapidement que les cellules plus petites.»
Le Dr McDonald a déclaré qu'il était souvent supposé que l'énergie nécessaire pour produire un nouvel individu était directement proportionnelle à sa masse, mais cette expérience a montré que ce n'est pas nécessairement le cas.
«Pourquoi alors, une cellule plus grande serait-elle moins chère à construire et à entretenir ?»
Les cellules de E. coli consomment beaucoup d'énergie pour maintenir les gradients ioniques à travers les membranes cellulaires. Comme les cellules plus grandes ont des surfaces plus petites par rapport à la masse, elles devraient également avoir des coûts de maintenance inférieurs à ceux des cellules plus petites. Les cellules évoluées ont également des génomes légèrement plus petits que les cellules ancestrales plus petites, de sorte que les coûts de réplication du génome sont inférieurs pour les cellules plus grandes.
De plus, les cellules évoluées ont affiné leurs composants génétiques dans cet environnement hautement prévisible, réduisant ainsi l'expression coûteuse de transcrits et de protéines inutiles.
«Remarquablement, il semble que l'évolution puisse dissocier les coûts de production de la taille; il n'y a aucun inconvénient à augmenter les taux de croissance des cellules évoluées plus grandes en termes de rendement», a déclaré le Dr McDonald.
Référence. Dustin J. Marshall et al, Long-term experimental evolution decouples size and production costs in Escherichia coli, PNAS (2022). DOI: 10.1073/pnas.2200713119